On Lower and Upper Bounds of the Difference Between the Arithmetic and the Geometric Mean

By S. H. Tung

Abstract

Lower and upper bounds of the difference between the arithmetic and the geometric mean of n quantities are given here in terms of n, the smallest value a and the largest value A of given n quantities. Also, an upper bound for the difference, independent of n, is given in terms of a and A. All the bounds obtained are sharp.

1. Introduction. Let a_{1}, \ldots, a_{n} be n quantities such that $0<a \equiv a_{1} \leqslant a_{2} \leqslant$ $\cdots \leqslant a_{n} \equiv A$. Let A_{n} be their arithmetic mean, G_{n} their geometric mean. Trivial lower and upper bounds of the difference $A_{n}-G_{n}$ are 0 and $A-a$ respectively. A nice upper bound has been obtained in [2]. Here we shall prove the following inequalities:

$$
n^{-1}(\sqrt{A}-\sqrt{a})^{2} \leqslant A_{n}-G_{n} \leqslant c a+(1-c) A-a^{c} A^{1-c}
$$

where

$$
c=\frac{\log [(A /(A-a)) \log A / a]}{\log A / a} .
$$

The inequalities give lower and upper bounds of the difference $A_{n}-G_{n}$ in terms of the smallest value a and the largest value A of the given n quantities. Instead of a discrete method, a continuous and analytic approach is used to obtain the inequalities.
2. Lower Bounds. We consider the lower bound of n quantities $0<a \equiv a_{1} \leqslant$ $\cdots \leqslant a_{k-1} \leqslant a_{k+1} \leqslant \cdots \leqslant a_{n} \equiv A$ with $a_{k} \equiv x, \quad 1<k<n$, to be a variable in the interval $[a, A]$. Let the arithmetic and the geometric means of the fixed $n-1$ quantities be A_{n-1} and G_{n-1}, respectively. Then

$$
A_{n}-G_{n}=n^{-1}\left\{(n-1) A_{n-1}+x\right\}-\left\{G_{n-1}^{n-1} x\right\}^{1 / n} \equiv D_{n}(x)
$$

Since $D_{n}^{\prime}(x)=0$ at $x=G_{n-1}$, the lower bound of $D_{n}(x)$ for x in the interval $[a, A]$ is

$$
D_{n}\left(G_{n-1}\right)=((n-1) / n)\left(A_{n-1}-G_{n-1}\right) .
$$

Chis result can also be found in [1, p. 12], but the method used here seems to be impler and more straightforward. By repeating this process, we have

$$
\begin{aligned}
A_{n}-G_{n} & \geqslant \frac{n-1}{n}\left(A_{n-1}-G_{n-1}\right) \geqslant \frac{n-1}{n} \frac{n-2}{n-1}\left(A_{n-2}-G_{n-2}\right) \geqslant \cdots \\
& \geqslant \frac{2}{n}\left(A_{2}-G_{2}\right)=\frac{2}{n}\left(\frac{a+A}{2}-\sqrt{a A}\right)=\frac{1}{n}(\sqrt{A}-\sqrt{a})^{2} .
\end{aligned}
$$

Equality holds only if $a_{2}=\cdots=a_{n-1}=\sqrt{a_{1} a_{n}}=\sqrt{a A}$.
3. Upper Bounds. Now we investigate the upper bound of $A_{n}-G_{n}$. The maximum of $D_{n}(x)$ on $[a, A]$ is attained at the endpoint a or A. Thus, the maximum of $A_{n}-G_{n}$ of n quantities is attained when $a \equiv a_{1}=\cdots=a_{k} \leqslant a_{k+1}=\cdots=a_{n} \equiv A$ for some $k, 1<k<n$, with the form

$$
\frac{k a+(n-k) A}{n}-\left\{a^{k} A^{n-k}\right\}^{1 / n}=a\left[\frac{k+(n-k) A / a}{n}-\{A / a\}^{(n-k) / n}\right] .
$$

For the sake of simplicity, let $a=1$ and consider the function

$$
D(x)=\frac{x+(n-x) A}{n}-A^{(n-x) / n}
$$

Through straight calculation, we have $D^{\prime}(x)=0$ for $x=c n$, where

$$
c=\frac{\log [(A /(A-1)) \log A]}{\log A}
$$

Thus, the upper bound for $A_{n}-G_{n}$ is $D(c n)=c+(1-c) A-A^{1-c} \equiv U$ which is independent of n. By repeated application of L'Hospital's rule, we have

$$
\lim _{A \rightarrow 1} c=\frac{1}{2} \text { and } \lim _{A \rightarrow \infty} c=0
$$

The upper bound is attained only at its limiting case $A \rightarrow 1$ or $n \rightarrow \infty$. But this is the best possible bound independent of the positive integer $n \geqslant 2$. For a fixed n, the sharp upper bound of $A_{n}-G_{n}$ is attained by $D\left(k_{n}\right)$ with $k_{n}=[c n]$ or [$\left.c n\right]+1$, where [$\left.c n\right]$ denotes the largest integer not greater than $c n$. Therefore, we have lower and upper bounds of $A_{n}-G_{n}$, both dependent and independent of n, in terms of $a=1$ and A as follows:

$$
0 \leqslant n^{-1}(\sqrt{A}-1)^{2} \leqslant A_{n}-G_{n} \leqslant D\left(k_{n}\right) \leqslant c+(1-c) A-A^{1-c}
$$

Some numerical data are shown below.

$$
\text { TABLE }(a=1)
$$

A	c	k_{10}	$D\left(k_{10}\right)$	U
1	0.5		0	0
1.001	0.499925	5	1.25×10^{-7}	1.25×10^{-7}
1.1	0.496029	5	1.191152×10^{-3}	1.191227×10^{-3}
2	0.471234	5	0.085786	0.086071
e	0.458675	5	0.210420	0.211867
5	0.434331	4	0.773472	0.777337
10	0.407973	4	2.418928	2.419591
100	0.333805	3	45.18114	45.45570
10^{5}	0.212238	2	7.00002×10^{4}	7.00906×10^{4}
10^{10}	0.136222	1	8.00000×10^{9}	8.20349×10^{9}

Department of Mathematics and Statistics
Miami University
Oxford, Ohio 45056

1. E. F. BECKENBACH \& R. E. BELLMAN, Inequalities, 2nd rev. ed., Ergebnisse der Mathematik und ibrer Grenzgebiete, N. F., Band 30, Springer-Verlag, New York, 1965. MR 33 \#236.
2. C. LOEWNER \& H. B. MANN, "On the difference between the geometric and the arithmetic mean of n quantities," Advances in Math., v. 5, 1971, pp. 472-473. MR 43 \#4982.
